Injection mortar FIS V

The high-performance hybrid mortar in the shuttle cartridge.

OVERVIEW

Injection mortar FIS V 360 S, styrene free

Static mixer FIS S

Injection mortar FIS V 950 S, styrene free

Approvals:

- European Technical Approval Option 7 in conjunction with Threaded rods FIS A resp. RG M for non-cracked concrete.
- German approval (DIBt) in conjunction with injection anchor sleeve FIS H M and injection anchor parts FIS G and FIS E for solid and hollow bricks (solid brick also without anchor sleeve).
- German approval (DIBt) for aerated cement in conjunction with cone drill PBB, centering sleeve PBZ and Threaded rod FIS G.
- German approval (DIBt) for reinforcement bars.
- German approval (DIBt) for Remedial wall tie VBS 8.
- German approval (DIBt) for Weather facing renovation system FWS.
- ICC-Approval for threaded rods and rebars

For fixing of:

- · Steel constructions
- Railings
- Hand-rails
- Consoles
- Ladders
- Machines
- Cable trays
- Staircases
- Gates
- Facades
- Window elements
- High racks
- Canopies
- · Stand-off installations

For load data see page 54

DESCRIPTION

- Styrene-free, quick-curing high-performance hybrid mortar (contains vinyl ester resin and cement).
- Resin and cement as well as water and hardener are stored in two separate chambers and are not mixed and activated until pushed through the static mixer.
- Partially-used cartridges can easily be reused by changing the static mixer.

Advantages/Benefits

- High-performance hybrid mortar for high loads in almost all building materials.
- Universal fixing system for a broad range of applications on building sites.
- Expansion-free anchoring allows low axial spacings and edge distances.
- Extensive range of accessories for a wide variety of applications.
- Ergonomic injection guns for quick and easy installation.
- A variety of approvals cover many applications in nearly all building material and guarantee maximum safety.
- First injection system world-wide with approvals for concrete, reinforcement bars, solid bricks, perforated bricks and aircrete.

Accessories / Recommended loads

- For fixing in concrete
- For fixing in masonry
- For fixing in aerated concrete
- For reinforcement bars
- Appropriate injection guns

TECHNICAL DATA

Injection mortar FIS V 360 S, styrene free

Injection mortar FIS V 950 S, styrene free

Туре	ArtNo.	ID	appr	provals contents		languages on the lable	shelf life	qty. per box
			DIBt	t ■ETA				
							months	pcs.
FIS V 360 S	94405	9	•	•	1 cartridge 360 ml + 2 static mixer	-	18	6
FIS V 950 S	17101	1	•	•	1 cartridge 950 ml + 2 static mixer	D, GB, F, NL, I, E, P, JP, PRC	18	6
FIS S	61223	1			10 static mixer FIS V 360 S	-	=	10

FIS V 360 S HWK small

Туре	ArtNo.	ID	contents	languages on the lable	qty. per box
FIS V 360 S HWK big	96554	2	20 x FIS V 360 S cartridges + 360 ml/560 g, 40 x static mixers	D, GB, F, NL,	pcs.
FIS V 360 S HWK small	92430	3	10 x FIS V 360 S cartridges + 360 ml/560 g, 20 x static mixers	D, GB, F, NL,	-

CURING TIME

Gelling and curing time of fischer FIS V

Cartridge temperature (mortar)	Gelling time	Temperature at anchoring base	Curing time	
		- 5°C - ± 0°C	24 hrs.	
		± 0°C-+ 5°C	3 hrs.	
+ 5°C - + 10°C	13 min.	+ 5°C - + 10°C	90 min.	
+ 10°C - + 20°C	5 min.	+ 10°C - + 20°C	60 min.	
+ 20°C - + 30°C	4 min.	+ 20°C - + 30°C	45 min.	
+ 30°C - + 40°C	2 min.	+ 30°C - + 40°C	35 min.	

The above times apply from the moment of contact between resin and hardener in the static mixer.

For installation, the cartridge temperature must be at least +5°C. For longer installation times, i.e. when interruptions occur in work, the mixer should be replaced.

Injection technique for concrete

TECHNICAL DATA

	Cleaning brush for cond	crete		Compressed	air cleaning gun ABP
Туре	ArtNo.	ID	for thread	,	qty. per box
			M		
					pcs.
BS ø 8	78177	7	M 6		1
BS ø 10	78178	4	M 8		1
BS ø 12	78179	1	M 10		1
BS ø 14	78180	7	M 12		1
BS ø 18	78181	4	M 16		1
BS ø 24	78182	1	M 20		1
BS ø 28	78183	8	M 24		1
BS ø 35	78184	5	M 30		1
ABP	59456	8	-		1

LOADS - INJECTION MORTAR FIS V, FIS VS AND FIS VW

Mean ultimate loads, design resistant and recommended loads for single anchors of fischer Injection system FIS V and FIS VS, FIS VW used with fischer threaded rods with large axial spacing and edge distance.

											No	on-crack	ed concre	ete						
Anchor size					М	6	M	8	М	10	М	12	М	16	M	20	M	24	М	30
F// 1	h ₀₁	= h _{ef1}	[mm]		5	0	6	5	8	0	9	15	1.	25	1	60	11	90	2	40
Effektive anchorage depth = Drill hole depth	h ₀₂	= h _{ef2}	[mm]		6	0	8	0	9	0	1	10	1-	40	1	70	2	40	25	80
Dim note depth	h ₀₃	= h _{ef3}	[mm]		7	5	9	5	1	10	1:	20	1	70	2	10	2	85	3/	40
Drill hole diameter		dO	[mm]		8	}	1	0	1	2	1	4	1	8	2	!4	2	28	3	35
Mean ultimate loads ${\rm N_{U}}$ and ${\rm V_{U}}$ [kN]																				
					gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4
			[kN]	h _{ef1}	10.5*	14.1*	19.0*	25.6*	30.2*	40.6*	43.8*	58.4	81.6*	93.2	127.4	127.4	176.9	176.9	248.1	248.1
Tensile	0°	N _u	[kN]	h _{ef2}	10.5*	14.1*	19.0*	25.6*	30.2*	40.6*	43.8*	59.0*	81.6*	104.4	127.4*	135.4	183.6*	223.5	289.5	289.5
			[kN]	h _{ef3}	10.5*	14.1*	19.0*	25.6*	30.2*	40.6*	43.8*	59.0*	81.6*	109.9*	127.4*	167.2	183.6*	247.1*	291.7*	351.5
Shear	90°	V _u	[kN]		6.3*	8.4*	11.4*	15.4*	18.1*	24.4*	26.3*	35.4*	49.0*	65.9*	76.4*	102.9*	110.1*	148.3*	175.0*	235.6
Design resistant loads $N_{\mbox{\footnotesize Rd}}$ and $V_{\mbox{\footnotesize Rd}}$ [kN]																			
					gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4
			[kN]	h _{ef1}	4.7	4.7	8.2	8.2	12.6	12.6	17.9	17.9	31.4	31.4	40.2	40.2	57.3	57.3	67.8	67.8
Tensile	0°	N_{Rd}	[kN]	h _{ef2}	5.7	5.7	10.1	10.1	14.1	14.1	20.7	20.7	35.2	35.2	42.7	42.7	72.4	72.4	79.2	79.2
			[kN]	h _{ef3}	7.1	7.1	11.9	11.9	17.3	17.3	22.6	22.6	42.7	42.7	52.8	52.8	85.9	85.9	96.1	96.1
Shear	90°	V_{Rd}	[kN]		4.2	4.5	7.6	8.2	12.1	13.0	17.5	18.9	32.6	35.3	51.0	55.0	73.4	79.2	116.7	125.9
Recommended loads N_{rec} and V_{rec} [k	(N)																			
					gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4
			[kN]	h _{ef1}	3.4	3.4	5.9	5.9	9.0	9.0	12.8	12.8	22.4	22.4	28.7	28.7	40.9	40.9	48.4	48.4
Tensile	0°	N_{rec}	[kN]	h _{ef2}	4.1	4.1	7.2	7.2	10.1	10.1	14.8	14.8	25.1	25.1	30.5	30.5	51.7	51.7	56.6	56.6
			[kN]	h _{ef3}	5.1	5.1	8.5	8.5	12.4	12.4	16.1	16.1	30.5	30.5	37.7	37.7	61.4	61.4	68.6	68.6
Shear	90°	V_{rec}	[kN]		3.0	3.2	5.4	5.9	8.6	9.3	12.5	13.5	23.3	25.2	36.4	39.3	52.4	56.6	83.4	89.9
Recommended bending moment M_{rec}	[Nm]																			
					gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4
		M _{rec}	[Nm]		4.5	4.9	11.4	11.9	22.3	23.8	38.9	42.1	98.9	106.7	193.1	207.9	333.1	359.4	668.0	720.7
Component dimensions, minimum axia	al spacin	gs and	edge di	stances	5															
Min. axial spacing 1)		Smin	[mm]		4	0	4	0	4	5	5	5	6	35	8	15	1	05	1/	40
Min. edge distance 1)		c _{min}	[mm]		4	0	4	0	4	5	5	5	6	35	8	15	1	05	1/	40
		h _{min1}	[mm]		10	10	10	00	1	10	1:	25	1	65	2	10	2	50	3	10
Min. structural component thickness		h _{min2}	[mm]		10	10	11	10	13	20	14	40	1	80	2.	20	31	00	3!	50
		h _{min3}	[mm]		11	5	12	25	14	10	1	50	2	10	2	60	3	45	4	10
Required torque		T _{inst}	[Nm])	1	0	2	0	4	.0	6	30	1:	20	1	50	31	00

^{*} Steel failure decisive

Values given above are valid under the following assumptions: - Sufficient mechanical cleaning of the drill hole using stainless steel brushes.

All values apply for concrete C 20/25 without edge or spacing influence.

Design resistant loads: material safety factor γ_M is included. Material safety factor γ_M depends on the type of anchor.

Recommended loads: material safety factor γ_M and safety factor for load γ_L = 1.4 are included.

The condition of application differ from those given in the European Technical Approval (ETA). For further detailed information about the ETA please contact the fischer technical service department. RG M threaded rods can be used as an alternative. Please refer to page 64 for suitable threaded rods.

For minimum axial spacing and minimum edge distance the above described loads have to be reduced (see "fischer Technical Handbook" or design software "CC-Compufix")!

⁻ Dry concrete, temperature range 50°C long term temperature and 80°C short term temperature.

Technical Data Sheet

fischer Injection mortar FIS V

FIS V 360 S, FIS V 950 S

Order numbers 94404, 94405, 68435, 17101

Product description: High performance hybrid mortar in shuttle cartridge, styrene free,

colour: grey

Product data	Testing method	<u>Results</u>
Stability		
UV-resistance (sunlight)		Resistant
Temperature resistance		120°C
Water resistancy		Resistant
Water absorption		After 14 days: 0.8%
Cleaning agents		1% tenside solution: no
		effects
Long-term behaviour	EOTA part 5	Approved suitability for
(Freezing and thawing resistance)		outside applications

Physical properties		
Flexural strength	According to DIN EN 196-1	After 45 min: ≥ 15 N/mm ²
Compressive strength	According to DIN EN 196-1	After 45 min: ≥ 60 N/mm ²
Tensile strength	ISO 527	After 24 hours: 10 MPa
Elongation at break	ISO 527	After 24 hours: 0.47%
Elastic modulus	ISO 527	After 24 hours: 4.3 GPa
Shrinkage		< 0.8%
Hardness Shore A	ISO 868	After 45 min: 91
Thermal conductivity	DIN 52612	0.65 W/mK
Specific contact resistance	IEC 60093	$21.9 \pm 17.1 \text{ x } 10^{9}\Omega\text{cm}$
pH-value		After 24 hours: > 12 (22°C)
Density		1.70 ± 0.1 g/cm ³

Workability features		
Viscosity (20°C)	Brookfield (Sp.7)	120 – 160 Pas
	10 U/min	
Open time (20°C)		5 min
Curing time (20°C)		60 min
Shelf life		18 months